Indefinite Integrals/Applications of The Fundamental Theorem

We saw last time that if we can find an antiderivative for a continuous function f, then we can evaluate the integral

$$
\int_{a}^{b} f(x) d x
$$

Indefinite Integrals

In light of the relationship between the antiderivative and the integral above, we will introduce the following (traditional) notation for antiderivatives:

$$
\int f(x) d x=F(x)+C, \quad \text { means that } \quad F^{\prime}(x)=f(x) \text { and } C \text { is a constant }
$$

This family of functions $\int f(x) d x$, is called the indefinite integral (of f). We refer to the integral $\int_{a}^{b} f(x) d x$ as the definite integral. Note that the definite integral is a number whereas the indefinite integral refers to a family of functions.

We begin by making a list of the antiderivatives we know and the elementary rules governing the calculation of antiderivatives, which we get by reversing our previous lists of derivatives and rules:

$$
\begin{array}{rrrl}
\int c f(x) d x & =c \int f(x) d x & \int[f(x)+g(x)] d x & =\int f(x) d x+\int g(x) d x \\
\int k d x & =k x+C & \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad(n \neq-1) \\
\int \sin x d x & =-\cos x+C & \int \cos x d x & =\sin x+C \\
\int \sec ^{2} x d x & =\tan x+C & \int \csc ^{2} x d x & =-\cot x+C \\
\int \sec x \tan x d x & =\sec x+C & \int \csc x \cot x d x & =-\csc x+C
\end{array}
$$

Note that $1 / x^{n}, n>1$ and $\tan x$ are not continuous functions. In the case of non-continuous functions it is understood that the antiderivatives differ by a constant on each interval where the function is continuous. For example for the function $1 / x^{2}$, we have in reality

$$
\int \frac{1}{x^{2}} d x= \begin{cases}-\frac{1}{x}+C_{1} & x>0 \\ -\frac{1}{x}+C_{2} & x<0\end{cases}
$$

Example Find the indefinite integral:

$$
\int x^{3}+2 x+5 d x
$$

Example Find the indefinite integral:

$$
\int \frac{x^{5 / 2}+5 x^{3}+3}{x^{2}} d x
$$

Example Find the indefinite integral

$$
\int \frac{\sin x}{\cos ^{2} x} d x
$$

Example Find the values of the definite integrals listed below:

$$
\int_{1}^{2} x^{3}+2 x+5 d x, \quad \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos ^{2} x} d x, \quad \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x+2 \cos x d x
$$

Interpretation and application of the Definite Integral

Recall that part 2 of the Fundamental Theorem of Calculus says that

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

if F is an antiderivative for f and f is continuous on $[a, b]$. Since $F^{\prime}(x)=f(x)$ for $a \leq x \leq b$, we can rewrite the theorem as

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

when $F^{\prime}(x)$ is continuous on $[a, b]$.

This sometimes make it easier to spot the definite integral in applications. $F(b)-F(a)$ is the net change in the function F on the interval $[a, b]$.
We can interpret the formula above as

$$
\int_{a}^{b} \text { (Rate of change) } d x=\text { Net change between } a \text { and } b .
$$

Some common applications of the definite integral are as follows:

- If $V(t)$ is the volume of water that has passed through a pipe at time t, then $V^{\prime}(t)$ is the rate of flow of water at time t and

$$
\int_{t_{1}}^{t_{2}} V^{\prime}(t) d t
$$

is the volume of water that has passed through the pipe between time t_{1} and time t_{2}.

- If the rate of growth of a population is given by $P^{\prime}(t)$, then the net change in the population during the time period from t_{1} to t_{2} is given by

$$
\int_{t_{1}}^{t_{2}} P^{\prime}(t) d t=P\left(t_{2}\right)-P\left(t_{1}\right)
$$

- If the cost of producing x units of a commodity is given by $C(x)$ and the marginal cost of producing x units of a commodity is $C^{\prime}(x)$, then the increase in cost from raising production levels from $x=x_{1}$ to $x=x_{2}$ is

$$
\int_{x_{1}}^{x_{2}} C^{\prime}(x) d x=C\left(x_{2}\right)-C\left(x_{1}\right)
$$

- If an object is moving along a straight line with position function $s(t)$ and velocity $s^{\prime}(t)=v(t)$ then

$$
\int_{t_{1}}^{t_{2}} v(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

is the net change in position or displacement of the object during the time period from t_{1} to t_{2}.

- To calculate the distance that the object above travels during the time period from t_{1} to t_{2}, we must integrate the speed function. The distance travelled by the object during the time period from t_{1} to t_{2} is

$$
\int_{t_{1}}^{t_{2}}|v(t)| d t=\text { total distance travelled. }
$$

Example A particle moves along a straight line. The velocity at time t is given by the $v(t)=t^{2}-4$ m / s.
(a) Find the displacement of the particle during the time period $0<t<3$.
(b) Find the distance travelled during this time period.

Example Water flows from a tank at the rate of $r(t)=100-2 t$ gallons per minute. How much water flows from the tank in the first 5 minutes?

Example The acceleration of a particle moving in a straight line is given by $a(t)=2 t+1 \mathrm{~m} / \mathrm{s}^{2}$. It is known that the initial velocity of the particle is $v(0)=3$, find the velocity on the interval $0 \leq t \leq 10$ and find the distance travelled in the first 10 minutes.

